0、算法概述
0.1 算法分類(lèi)
十種常見(jiàn)排序算法可以分為兩大類(lèi):
- 比較類(lèi)排序:通過(guò)比較來(lái)決定元素間的相對(duì)次序,由于其時(shí)間復(fù)雜度不能突破O(nlogn),因此也稱(chēng)為非線性時(shí)間比較類(lèi)排序。
- 非比較類(lèi)排序:不通過(guò)比較來(lái)決定元素間的相對(duì)次序,它可以突破基于比較排序的時(shí)間下界,以線性時(shí)間運(yùn)行,因此也稱(chēng)為線性時(shí)間非比較類(lèi)排序。


0.2 算法復(fù)雜度


0.3 相關(guān)概念
- 穩(wěn)定:如果a原本在b前面,而a=b,排序之后a仍然在b的前面。
- 不穩(wěn)定:如果a原本在b的前面,而a=b,排序之后 a 可能會(huì)出現(xiàn)在 b 的后面。
- 時(shí)間復(fù)雜度:對(duì)排序數(shù)據(jù)的總的操作次數(shù)。反映當(dāng)n變化時(shí),操作次數(shù)呈現(xiàn)什么規(guī)律。
- 空間復(fù)雜度:是指算法在計(jì)算機(jī)
內(nèi)執(zhí)行時(shí)所需存儲(chǔ)空間的度量,它也是數(shù)據(jù)規(guī)模n的函數(shù)。
1、冒泡排序(Bubble Sort)
冒泡排序是一種簡(jiǎn)單的排序算法。它重復(fù)地走訪過(guò)要排序的數(shù)列,一次比較兩個(gè)元素,如果它們的順序錯(cuò)誤就把它們交換過(guò)來(lái)。走訪數(shù)列的工作是重復(fù)地進(jìn)行直到?jīng)]有再需要交換,也就是說(shuō)該數(shù)列已經(jīng)排序完成。這個(gè)算法的名字由來(lái)是因?yàn)樵叫〉脑貢?huì)經(jīng)由交換慢慢“浮”到數(shù)列的頂端。
1.1 算法描述
- 比較相鄰的元素。如果第一個(gè)比第二個(gè)大,就交換它們兩個(gè);
- 對(duì)每一對(duì)相鄰元素作同樣的工作,從開(kāi)始第一對(duì)到結(jié)尾的最后一對(duì),這樣在最后的元素應(yīng)該會(huì)是最大的數(shù);
- 針對(duì)所有的元素重復(fù)以上的步驟,除了最后一個(gè);
- 重復(fù)步驟1~3,直到排序完成。
1.2 動(dòng)圖演示

1.3 代碼實(shí)現(xiàn)

2、選擇排序(Selection Sort)
選擇排序(Selection-sort)是一種簡(jiǎn)單直觀的排序算法。它的工作原理:首先在未排序序列中找到最?。ù螅┰兀娣诺脚判蛐蛄械钠鹗嘉恢?,然后,再?gòu)氖S辔磁判蛟刂欣^續(xù)尋找最?。ù螅┰?,然后放到已排序序列的末尾。以此類(lèi)推,直到所有元素均排序完畢。
2.1 算法描述
n個(gè)記錄的直接選擇排序可經(jīng)過(guò)n-1趟直接選擇排序得到有序結(jié)果。具體算法描述如下:
- 初始狀態(tài):無(wú)序區(qū)為R[1..n],有序區(qū)為空;
- 第i趟排序(i=1,2,3…n-1)開(kāi)始時(shí),當(dāng)前有序區(qū)和無(wú)序區(qū)分別為R[1..i-1]和R(i..n)。該趟排序從當(dāng)前無(wú)序區(qū)中-選出關(guān)鍵字最小的記錄 R[k],將它與無(wú)序區(qū)的第1個(gè)記錄R交換,使R[1..i]和R[i+1..n)分別變?yōu)橛涗泜€(gè)數(shù)增加1個(gè)的新有序區(qū)和記錄個(gè)數(shù)減少1個(gè)的新無(wú)序區(qū);
- n-1趟結(jié)束,數(shù)組有序化了。
2.2 動(dòng)圖演示

2.3 代碼實(shí)現(xiàn)

2.4 算法分析
表現(xiàn)最穩(wěn)定的排序算法之一,因?yàn)闊o(wú)論什么數(shù)據(jù)進(jìn)去都是O(n2)的時(shí)間復(fù)雜度,所以用到它的時(shí)候,數(shù)據(jù)規(guī)模越小越好。唯一的好處可能就是不占用額外的內(nèi)存空間了吧。理論上講,選擇排序可能也是平時(shí)排序一般人想到的最多的排序方法了吧。
3、插入排序(Insertion Sort)
插入排序(Insertion-Sort)的算法描述是一種簡(jiǎn)單直觀的排序算法。它的工作原理是通過(guò)構(gòu)建有序序列,對(duì)于未排序數(shù)據(jù),在已排序序列中從后向前掃描,找到相應(yīng)位置并插入。
3.1 算法描述
一般來(lái)說(shuō),插入排序都采用in-place在數(shù)組上實(shí)現(xiàn)。具體算法描述如下:
- 從第一個(gè)元素開(kāi)始,該元素可以認(rèn)為已經(jīng)被排序;
- 取出下一個(gè)元素,在已經(jīng)排序的元素序列中從后向前掃描;
- 如果該元素(已排序)大于新元素,將該元素移到下一位置;
- 重復(fù)步驟3,直到找到已排序的元素小于或者等于新元素的位置;
- 將新元素插入到該位置后;
- 重復(fù)步驟2~5。
3.2 動(dòng)圖演示

3.2 代碼實(shí)現(xiàn)

3.4 算法分析
插入排序在實(shí)現(xiàn)上,通常采用in-place排序(即只需用到O(1)的額外空間的排序),因而在從后向前掃描過(guò)程中,需要反復(fù)把已排序元素逐步向后挪位,為最新元素提供插入空間。
4、希爾排序(Shell Sort)
1959年Shell發(fā)明,第一個(gè)突破O(n2)的排序算法,是簡(jiǎn)單插入排序的改進(jìn)版。它與插入排序的不同之處在于,它會(huì)優(yōu)先比較距離較遠(yuǎn)的元素。希爾排序又叫縮小增量排序。
4.1 算法描述
先將整個(gè)待排序的記錄序列分割成為若干子序列分別進(jìn)行直接插入排序,具體算法描述:
- 選擇一個(gè)增量序列t1,t2,…,tk,其中ti>tj,tk=1;
- 按增量序列個(gè)數(shù)k,對(duì)序列進(jìn)行k 趟排序;
- 每趟排序,根據(jù)對(duì)應(yīng)的增量ti,將待排序列分割成若干長(zhǎng)度為m 的子序列,分別對(duì)各子表進(jìn)行直接插入排序。僅增量因子為1 時(shí),整個(gè)序列作為一個(gè)表來(lái)處理,表長(zhǎng)度即為整個(gè)序列的長(zhǎng)度。
4.2 動(dòng)圖演示

4.3 代碼實(shí)現(xiàn)

4.4 算法分析
希爾排序的核心在于間隔序列的設(shè)定。既可以提前設(shè)定好間隔序列,也可以動(dòng)態(tài)的定義間隔序列。動(dòng)態(tài)定義間隔序列的算法是《算法(第4版)》的合著者Robert Sedgewick提出的?!?/p>